Good Estimates and Bad Biases:
How can we create a good work estimate despite the human biases in our judgment?

John M. Nevison, PMP

“The fault, dear Brutus, is not in our stars, but in ourselves…”
- Cassius, in William Shakespeare’s Julius Caesar

Introduction
When you do a poor job of planning a project that involves a new technology or unfamiliar work, you can blame your bad estimates on the “difficulties of unfamiliar work.” However, if your work estimates remain inaccurate for subsequent projects in a familiar environment, you should wonder whether your difficulties might be caused by something other than just personal shortcomings. As it turns out, certain kinds of mental errors are innate. Over the past forty years, psychologists have unearthed what they call “psychological traps” in our thinking, places where our judgment goes awry because we are human.

This discussion will review several of these traps and show how they affect our work estimates. The theme will be, “Forewarned is forearmed.” If we are conscious of these traps, we can engage in compensating behavior that will lead to better estimates. Better estimates of effort and duration will mean a better project plan, better project control, less re-planning, and a greater likelihood of meeting the final schedule.

High or Low?
Why do we so often fail to make accurate work estimates when we try? Why do we bias our estimate one way or the other?

We estimate high because we are cautious:
- To give ourselves some freedom, some room for maneuver
- To protect ourselves against some uncertainty
- To make a commitment that we are sure we can keep
- Because we are under-confident in our knowledge about the work
- Because we are under-confident in our ability to do the work
- Because we are pessimistic in our general outlook

We estimate low because we are bold:
- To give ourselves a challenging goal
- To expose ourselves to some uncertainty
- To make a commitment that will look good when we keep it
- Because we are over-confident in our knowledge about the work
- Because we are over-confident in our ability to do the work
- Because we are optimistic in our general outlook
Looking over the two lists we might hope that the reasons would cancel each other out. Unfortunately, research shows that, left to our instincts, we will estimate low. If, however, we become aware of the psychological traps that cause our estimates to be low, we can overcome these tendencies and improve our estimating.

Project Planning and Human Foibles
Among the many psychological traps that affect our judgment are five that have a serious effect on project work estimation:

1. Being too sure of yourself: The overconfidence trap
2. Seeing what you want to see: The confirming-evidence trap
3. Neglecting relevant information: The base-rate trap
4. The meaning of the mean: The regression trap
5. Slanting probabilities and estimates: The prudence trap[1]

The first four traps tend to generate work estimates that are unrealistically low; the fifth trap, unrealistically high. Our goal is to end up somewhere in the realistic middle. We will examine each trap in turn.

The Overconfidence Trap: Being too sure of yourself
When individuals are given tests and asked how confident they are in their answers, their score for “100% certain” answers is about 80%; their score for “80% confident” answers is 50%. Different experiments over different ranges confirm that, in general, we are overconfident [2].

Overconfidence also leads to estimates that fall within a too-narrow range to capture some unknown number, like the birth date of a famous person, or the distance between two given cities. When given 10 unknowns to bracket with “90% confidence,” people succeed only 60% of the time.

So an estimate of work to be performed is liable to be low because we are overconfident in our estimation skill, our knowledge of the work, and our ability to do the work.

The remedy for this trap is a little humility, followed closely by curiosity about a reference class of similar work examples. Such examples are often found in old project plans and in colleagues’ experiences. By gathering relevant historical evidence, we temper our initial overconfidence with data about what has actually happened in similar circumstances.

The Confirming Evidence Trap: Seeing what you want to see
When proponents and opponents of capital punishment are presented with two scientific studies, one with supporting data and one with opposing data, everyone, on both sides, emerges from their reading assignments even more certain of their original position. We human beings select evidence to confirm our beliefs and we ignore that which conflicts with our beliefs.
The confirming-evidence trap takes an estimator’s natural pride of work and adds the tendency to notice only reinforcing examples of how well the estimated work can be completed.

A good antidote to this trap is to remind yourself to pay attention to data that do not agree with your beliefs about the work. In particular, when you select your reference class of other work, try to assess at least three points of information:

1. What’s the fastest this has ever been done? (Easy to do because it agrees with our flattering self-image.)
2. What’s the slowest this has ever been done? (Hard to do because it contradicts our flattering self-image and probably requires a little extra pessimistic push on our recollection.)
3. What, in between the extremes, is the most likely single value? (Likely to drift towards the flattering end unless supported by a larger number of examples in the reference class.)

The Base-Rate Trap: Neglecting relevant information

When a publisher is asked about the future sales of a new novel, she tends to extrapolate from information about the particular book, its author, plot, and style, rather than from general statistics about the sales of similar novels. Repeated experiments confirm that we tend to focus on the singular information about the particular case under consideration and pay little or no attention to the base-rate data about the distributional information of outcomes in similar situations.

Here’s an experiment that illustrates this tendency. A person is asked to identify “Steven’s profession” as either a librarian or a sales rep. Steven is described as “Very shy and withdrawn, invariably helpful, but with little interest in people or in the world of reality. A meek and tidy soul, he has a need for order and structure and a passion for detail.” Most of the time, people guess that Steven is a librarian.

Even after we are told that in our society there are 100 male sales reps for every male librarian, we still choose librarian. We ignore the overwhelming odds that a small percentage of shy sales reps will significantly outnumber the scarce male librarians and we continue to choose the wrong answer.

In other experiments, if Steven’s choice of professions is lawyer or engineer, people’s answers will split 50-50. If told that the lawyer/engineer ratio is 70-30 (either way!), people will still split in their answers 50-50! Again, our behavior illustrates the base-rate trap where we focus on singular data with a wealth of detail about one individual and neglect distributional data.

For our work estimate, the way to avoid to the base-rate trap is to ask an additional question of the reference class (after we have good values for low, likely, and high). The question is “What is the weighted center (also called the mean) of the whole distribution?”
For example, if the reference class is distributed over the range like a “triangle,” with a low of 2, a likely of 4, and high of 8, it has mean a equal to \((2 + 4 + 8) / 3\) or 4.7. If the distribution is like a “beta” distribution, the mean is equal to \((2 + 4 \times 4 + 8) / 6\) or 4.3. In both distributions [3] the mean is higher than the “most likely” and represents a full acknowledgment of the entire base-rate distribution of the data.

Figure 1. Triangular and Beta Distributions.

The Regression Trap: The meaning of the mean
Over one hundred years ago Francis Galton discovered that tall parents have shorter children and short parents have taller children. Any group with an average that differs from the overall population will have offspring that, on average, are closer to the overall population’s average. The offspring’s average will “regress towards the mean” of the population.

Yet when we are informed that Group 1 consists of everyone who scored in the top 10% of History Test A and we are asked where Group 1’s average score will fall when presented with History Test B (of equal difficulty), we answer “in the top 10%.” We forget that the group average will regress towards the mean and probably be lower than the top 10%. The likelihood is that any group whose average was above (different from) the mean the first time will be closer to the mean the second time. (The score may still be above the mean, but it will probably be below the high first score and closer to the mean.)

To include an initial, intuitive guess in our final estimate, we need to counteract the regression trap by taking some final steps. After we have established a reference class, a range of values, an assumption about the distribution, and a mean value, the final steps begin with a look back at our initial guess and at our level of confidence in that guess. If our initial guess equals the mean, we are done. If the guess is off the mean we should move it back towards the mean. (If we are very sure of our guess, we should only move it back a little bit; if we were wildly guessing, we should move it back most of the way back to the mean.) In short, our steps should regress our estimate towards the mean [4].
The Prudence Trap: Slanting probabilities and estimates
We have been low before and we wish to avoid being wrong again, so after we have completed our analysis, we “pad” our estimate a little. Our boss does the same thing. Somewhere up the decision chain, someone arbitrarily cuts the estimate. Prudence, “worst-case” anxiety, and “fear of padding” lead to an estimate that has become completely unhinged from reality.

The prudence trap in estimation is altering an estimate by an amount that is not supported by the evidence of the reference class you have assembled. To compensate, keep your estimates honest, stay with what you know, and be sure that others know that your estimate is not padded.

Conclusion: Work in Process
In order to combat our inherent tendencies to make an overconfident, prejudicial, singular-focused, regression-ignoring estimate we can use this process:

1. Select a reference class (historical results of similar activities to establish base rates for this work).
2. Assess the distribution of outcomes by asking:
 a. What’s the best this has ever been?
 b. What’s the worst this has ever been?
 c. What’s the most likely single value for this?
3. Find the mean (the weighted center) of the distribution.
4. Position your intuitive, original, (optimistic?) estimate in the distribution.
5. Assess the reliability of your original estimate. (It’s very reliable, 0.9 [tomorrow’s weather]; it’s very unreliable, 0.1 [total runs in tomorrow’s baseball game]).
6. If your original estimate is not the mean of the distribution, adjust your estimate by regressing towards the mean.
 a. When your reliability is 0.3, correct by going 70% of the way back to the mean;
 b. When 0.4, 60% and so on…

This process improves our work estimates by compensating for our very human biases. If we treat these new estimates honestly (without added padding), our project’s plan has a much higher likelihood of being true, our project work can be better managed against the plan, and our results can arrive on time!

Notes
1. The language for all the traps but “regression” is taken from Hammond, et al., below. Regression is found in Kahneman and Tversky, 1982.
2. The data on the experiments for all of these traps can be found in Kahneman and Tversky, 1982. Several anecdotes are also recounted in Hammond, et al., with additional references.
3. Details on the Beta distribution, the Triangular distribution, and general work estimation are in Nevison.
4. This regressing towards the mean is described in Kahneman and Tversky, 1982, and how to deal with regression is described in Lovallo and Kahneman, 2003.

References

About the Author
John M. (Jack) Nevison, PMP, is the author of six books and numerous articles on computing and management. During the course of his business career, Nevison has built and sold two businesses, managed projects, managed project managers, and served as both an internal and external consultant to Fortune 100 companies. He is a past president of the Mass Bay Chapter of the Project Management Institute (PMI®) and a past president of the Greater Boston Chapter of the Association for Computing Machinery (ACM). Nevison is a certified Project Management Professional (PMP), and a Phi Beta Kappa graduate of Dartmouth College.

About New Leaf Project Management
New Leaf is a provider of premier project-management training and consulting. Our comprehensive approach is based on research and anchored to The PMBOK® Guide, the industry standard. We offer project management training for all levels of experience, from novice to veteran, including preparation for the Project Management Professional (PMP) Exam. We customize programs to meet individual client needs and blend training with coaching for sustained practice improvement. Our proprietary PM Competency Assessment allows us to address our client’s greatest needs first.
Score at least 70% correct on the questions below and earn PDUs! See next page for details.

PDU Questions: Good Estimates and Bad Biases

($9.95, 1 PDU)

1. Compensating behavior will NOT lead to:
 a. Better estimates
 b. Better project plan
 c. Less re-planning
 d. Missed schedules

2. We estimate high because we are:
 a. Bold
 b. Cautious
 c. Optimistic
 d. Over-confident

3. We estimate low because we are:
 a. Bold
 b. Cautious
 c. Pessimistic
 d. Under-confident

4. Failure to estimate a broad-enough range for an uncertain quantity is an example of which trap?
 a. Overconfidence
 b. Confirming-evidence
 c. Ignoring base-rate
 d. Regression

5. Ignoring evidence that does not agree with your opinion is an example of which trap?
 a. Overconfidence
 b. Confirming-evidence
 c. Ignoring base-rate
 d. Regression

6. Failure to pay attention to the distributional information about an estimate is an example of which trap?
 a. Overconfidence
 b. Confirming-evidence
 c. Ignoring base-rate
 d. Regression

7. Failure to reconcile your original guess with your reference distribution of related examples is an example of which trap?
 a. Overconfidence
 b. Confirming-evidence
 c. Ignoring base-rate
 d. Regression

8. Which trap would make your estimate high?
 a. Regression
 b. Overconfidence
 c. Prudence
 d. Ignoring base-rate
9. The two distributions for three-points mentioned in the discussion are:
 a. Triangular and beta
 b. Triangular and exponential
 c. Exponential and beta
 d. Constant and triangular

10. The steps in the recommended work process that are uniquely devoted to addressing the regression trap are:
 a. Steps 1-2
 b. Steps 1-4
 c. Steps 3-6
 d. Steps 4-6

Good Estimates and Bad Biases

If you score 70% or more correct answers, a PDU certificate will be e-mailed to you. These PDUs count as “Category 3: PMI/R.E.P. Educational Activities” and are not limited for CCR/PMP recertification purposes. To receive your PDUs, please fill in the information below (✓ fields are required).

<table>
<thead>
<tr>
<th>✓ Name (As it appears on your credit card)</th>
<th>✓ Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Account Number: □ MasterCard □ Visa</td>
<td>✓ E-mail address</td>
</tr>
<tr>
<td>(For multiple tests, fill in required info once.)</td>
<td>Address</td>
</tr>
<tr>
<td>✓ Expiration Date: (mm-yy)</td>
<td>City</td>
</tr>
<tr>
<td></td>
<td>State/Province</td>
</tr>
<tr>
<td></td>
<td>Zip Code</td>
</tr>
<tr>
<td></td>
<td>Country</td>
</tr>
</tbody>
</table>

How did you hear about our PDU White Papers?

Approximately how many hours did it take you to read the article and take the test?

Please mail the answer sheet(s) with payment to: (or e-mail to info@newleafpm.com or fax to +978-369-9009 – call first)

<table>
<thead>
<tr>
<th>PDU White Papers</th>
<th>New Leaf Project Management</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>500 Thoreau Street</td>
</tr>
<tr>
<td></td>
<td>Concord, MA 01742 USA</td>
</tr>
</tbody>
</table>